Temperature Gradient-Dominated Electrical Behaviours in a Piezoelectric PN Junction
Citation
Source Title
ISSN
Faculty
School
Collection
Abstract
© 2021, The Minerals, Metals & Materials Society. In this paper, we have systematically investigated the temperature gradient-dependent electrical behaviours in a piezoelectric PN junction. A new iterative computational method is proposed by utilizing the 1-D nonlinear theories of thermo-piezoelectric semiconductors. Coupling between the thermal gradient fields and polarization charges is discussed. It is found that the electromechanical field of a piezoelectric PN junction has a quick response to thermal gradient. Furthermore, gate voltage and carrier transport characteristics can be effectively tuned with thermal-induced and piezoelectric charges. It is shown that a piezoelectric PN junction is highly sensitive to the temperature gradient, which may provide an alternative approach to manipulate the carrier transport in piezotronic devices.
Related items
Showing items related by title, author, creator and subject.
-
Lawrence, Shane Michael (2011)Multiferroic materials have recently begun to attract significant scientific interest due to their potential applications in the design of modern electronic devices. Currently, the magnetic properties of materials form ...
-
Aragonès, A.; Haworth, N.; Darwish, Nadim; Ciampi, S.; Bloomfield, N.; Wallace, G.; Diez-Perez, I.; Coote, M. (2016)It is often thought that the ability to control reaction rates with an applied electrical potential gradient is unique to redox systems. However, recent theoretical studies suggest that oriented electric fields could ...
-
Zhang, L.; Laborda, E.; Darwish, Nadim; Noble, B.; Tyrell, J.; Pluczyk, S.; Le Brun, A.; Wallace, G.; Gonzalez, J.; Coote, M.; Ciampi, Simone (2018)© 2017 American Chemical Society. Alkoxyamines are heat-labile molecules, widely used as an in situ source of nitroxides in polymer and materials sciences. Here we show that the one-electron oxidation of an alkoxyamine ...