Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Multiuser Multi-Hop AF MIMO Relay System Design Based on MMSE-DFE Receiver

    Access Status
    Fulltext not available
    Authors
    Lv, Y.
    He, Z.
    Rong, Yue
    Date
    2019
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Lv, Y. and He, Z. and Rong, Y. 2019. Multiuser Multi-Hop AF MIMO Relay System Design Based on MMSE-DFE Receiver. IEEE Access. 7: pp. 42518-42535.
    Source Title
    IEEE Access
    DOI
    10.1109/ACCESS.2019.2907404
    ISSN
    2169-3536
    Faculty
    Faculty of Science and Engineering
    School
    School of Elec Eng, Comp and Math Sci (EECMS)
    URI
    http://hdl.handle.net/20.500.11937/88938
    Collection
    • Curtin Research Publications
    Abstract

    To achieve a better long source-destination distance communication in uplink multiaccess scenarios, we propose a multiuser multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay technique with nonlinear minimal mean-squared error (MMSE)-decision feedback equalization (DFE) receiver. Under transmission power constraints, this paper focuses on the improvement of reliability, meanwhile, which doesn't lose the effectiveness or require higher complexity. We demonstrate that the optimal structures of relay amplifying matrices lead to a cascading construction for the mean-squared error (MSE) matrices of respective signal waveform estimations at the destination and each relay node. Hence, in (moderately) high signal-to-noise ratio (SNR) environment, the intractable nonconvex optimization problem can be decomposed into easier subproblems for separate optimizations of source precoding and relay amplifying matrices. The source precoding matrix, along with the decision feedback matrix, is obtained by an iterative process, which can converge to a Nash point within the reasonable time. As for the relay amplifying matrices, closed-form water-filling solutions are derived. The simulation and analysis results show that compared to other existing algorithms, which also utilize decomposition methods to simplify operations, the proposed algorithms have better MSE and bit-error-rate (BER) performance without increasing the computing time or signaling overhead, thus providing a new step forward in MIMO relay system design.

    Related items

    Showing items related by title, author, creator and subject.

    • Signal processing algorithms for multiuser MIMO relay communication systems
      Khandaker, Muhammad Ruhul Amin (2012)
      The increasing demand for mobile applications such as streaming media, software updates, and location-based services involving group communications has prompted the need for wireless communication technologies that can ...
    • On Uplink-Downlink Duality of Multi-Hop MIMO Relay Channel
      Rong, Yue; Khandaker, Muhammad (2011)
      For two-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay systems, the uplink-downlink duality has been recently investigated. In this paper, we establish the duality between uplink and downlink ...
    • Joint Source and Relay Optimization for Parallel MIMO Relays Using MMSE-DFE Receiver
      Toding, Apriana; Khandaker, Muhammad; Rong, Yue (2010)
      In this paper, we study the optimal structure of the source precoding matrix and the relay amplifying matrices for multiple-input multiple-output (MIMO) relay communication systems with parallel relay nodes. In particular, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.