Experimental and numerical studies of the shear resistance capacities of interlocking blocks
dc.contributor.author | Shi, Tingwei | |
dc.contributor.author | Zhang, Xihong | |
dc.contributor.author | Hao, Hong | |
dc.contributor.author | Xie, Guanyu | |
dc.date.accessioned | 2022-08-02T07:12:23Z | |
dc.date.available | 2022-08-02T07:12:23Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Shi, T. and Zhang, X. and Hao, H. and Xie, G. 2021. Experimental and numerical studies of the shear resistance capacities of interlocking blocks. Journal of Building Engineering. 44: ARTN 103230. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/89091 | |
dc.identifier.doi | 10.1016/j.jobe.2021.103230 | |
dc.description.abstract |
Interlocking bricks could improve construction efficiency, reduce labour cost, and provide better mechanical performance for masonry structures. Nevertheless, the shear properties of mortar-less interlocking bricks have not been systematically investigated which may impede their wide applications. In this study, the shear performance of a new type of interlocking brick is investigated in detail. Laboratory shear test is firstly conducted to study the damage and shear capacity of mortar-less (dry-stacked) interlocking bricks. Numerical model is then generated with consideration of contact imperfection and validated with test results. Intensive parametric studies are conducted to quantify the influences of material strength, axial pre-compression force, friction coefficients, and contact imperfection at brick interfaces on the shear response of interlocking prisms. The accuracy of existing methods for predicting the shear capacities of shear key by design standard and empirical formula are evaluated. Based on the numerical and laboratory results, an empirical design formula is proposed to predict the shear capacity of the interlocking brick. | |
dc.language | English | |
dc.publisher | Elsevier | |
dc.relation.sponsoredby | http://purl.org/au-research/grants/arc/LP170100846 | |
dc.subject | Science & Technology | |
dc.subject | Technology | |
dc.subject | Construction & Building Technology | |
dc.subject | Engineering, Civil | |
dc.subject | Engineering | |
dc.subject | Interlocking blocks | |
dc.subject | Shear key | |
dc.subject | Shear strength | |
dc.subject | Numerical modelling | |
dc.subject | INPLANE SEISMIC RESPONSE | |
dc.subject | EPOXIED JOINTS | |
dc.subject | DRY JOINTS | |
dc.subject | BEHAVIOR | |
dc.subject | STRENGTH | |
dc.subject | MASONRY | |
dc.subject | BRIDGES | |
dc.subject | PERFORMANCE | |
dc.subject | INTENSITY | |
dc.subject | COLUMNS | |
dc.title | Experimental and numerical studies of the shear resistance capacities of interlocking blocks | |
dc.type | Journal Article | |
dcterms.source.volume | 44 | |
dcterms.source.issn | 2352-7102 | |
dcterms.source.title | Journal of Building Engineering | |
dc.date.updated | 2022-08-02T07:12:22Z | |
curtin.department | School of Civil and Mechanical Engineering | |
curtin.accessStatus | Open access | |
curtin.faculty | Faculty of Science and Engineering | |
curtin.contributor.orcid | Zhang, Xihong [0000-0002-8667-4692] | |
curtin.contributor.orcid | Hao, Hong [0000-0001-7509-8653] | |
curtin.contributor.researcherid | Hao, Hong [D-6540-2013] | |
curtin.identifier.article-number | ARTN 103230 | |
dcterms.source.eissn | 2352-7102 | |
curtin.contributor.scopusauthorid | Zhang, Xihong [53065126400] | |
curtin.contributor.scopusauthorid | Hao, Hong [7101908489] |