Show simple item record

dc.contributor.authorZhang, N.
dc.contributor.authorZhao, X.
dc.contributor.authorLi, J.
dc.contributor.authorHuang, L.
dc.contributor.authorLi, H.
dc.contributor.authorFeng, H.
dc.contributor.authorGarcia, M.A.
dc.contributor.authorCao, Y.
dc.contributor.authorSun, Zhonghua
dc.contributor.authorChai, S.
dc.date.accessioned2023-02-07T02:51:47Z
dc.date.available2023-02-07T02:51:47Z
dc.date.issued2023
dc.identifier.citationZhang, N. and Zhao, X. and Li, J. and Huang, L. and Li, H. and Feng, H. and Garcia, M.A. et al. 2023. Machine Learning Based on Computed Tomography Pulmonary Angiography in Evaluating Pulmonary Artery Pressure in Patients with Pulmonary Hypertension. Journal of Clinical Medicine. 12 (4): 1297.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90361
dc.description.abstract

Background: Right heart catheterization is the gold standard for evaluating hemodynamic parameters of pulmonary circulation, especially pulmonary artery pressure (PAP) for diagnosis of pulmonary hypertension (PH). However, the invasive and costly nature of RHC limits its widespread application in daily practice. Purpose: To develop a fully automatic framework for PAP assessment via machine learning based on computed tomography pulmonary angiography (CTPA). Materials and Methods: A machine learning model was developed to automatically extract morphological features of pulmonary artery and the heart on CTPA cases collected between June 2017 and July 2021 based on a single center experience. Patients with PH received CTPA and RHC examinations within 1 week. The eight substructures of pulmonary artery and heart were automatically segmented through our proposed segmentation framework. Eighty percent of patients were used for the training data set and twenty percent for the independent testing data set. PAP parameters, including mPAP, sPAP, dPAP, and TPR, were defined as ground-truth. A regression model was built to predict PAP parameters and a classification model to separate patients through mPAP and sPAP with cut-off values of 40 mm Hg and 55 mm Hg in PH patients, respectively. The performances of the regression model and the classification model were evaluated by analyzing the intraclass correlation coefficient (ICC) and the area under the receiver operating characteristic curve (AUC). Results: Study participants included 55 patients with PH (men 13; age 47.75 ± 14.87 years). The average dice score for segmentation increased from 87.3% ± 2.9 to 88.2% ± 2.9 through proposed segmentation framework. After features extraction, some of the AI automatic extractions (AAd, RVd, LAd, and RPAd) achieved good consistency with the manual measurements. The differences between them were not statistically significant (t = 1.222, p = 0.227; t = −0.347, p = 0.730; t = 0.484, p = 0.630; t = −0.320, p = 0.750, respectively). The Spearman test was used to find key features which are highly correlated with PAP parameters. Correlations between pulmonary artery pressure and CTPA features show a high correlation between mPAP and LAd, LVd, LAa (r = 0.333, p = 0.012; r = −0.400, p = 0.002; r = −0.208, p = 0.123; r = −0.470, p = 0.000; respectively). The ICC between the output of the regression model and the ground-truth from RHC of mPAP, sPAP, and dPAP were 0.934, 0.903, and 0.981, respectively. The AUC of the receiver operating characteristic curve of the classification model of mPAP and sPAP were 0.911 and 0.833. Conclusion: The proposed machine learning framework on CTPA enables accurate segmentation of pulmonary artery and heart and automatic assessment of the PAP parameters and has the ability to accurately distinguish different PH patients with mPAP and sPAP. Results of this study may provide additional risk stratification indicators in the future with non-invasive CTPA data.

dc.publisherMDPI AG
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject1102 - Cardiorespiratory Medicine And Haematology
dc.subject3201 - Cardiovascular medicine and haematology
dc.titleMachine Learning Based on Computed Tomography Pulmonary Angiography in Evaluating Pulmonary Artery Pressure in Patients with Pulmonary Hypertension
dc.typeJournal Article
dcterms.source.volume12
dcterms.source.number4
dcterms.source.issn2077-0383
dcterms.source.titleJournal of Clinical Medicine
dc.date.updated2023-02-07T02:51:46Z
curtin.departmentCurtin Medical School
curtin.accessStatusOpen access
curtin.facultyFaculty of Health Sciences
curtin.contributor.orcidSun, Zhonghua [0000-0002-7538-4761]
curtin.contributor.researcheridSun, Zhonghua [B-3125-2010]
curtin.identifier.article-number1297
curtin.contributor.scopusauthoridSun, Zhonghua [12544503300]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/