Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries
Access Status
Authors
Date
2023Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Collection
Abstract
In search for new anode materials with high-capacity, ultra-fast charging, and safety characteristics for lithium-ion batteries (LIBs), copper niobate (Cu0.1Nb1.9O4.85 nanorods and Cu0.1Nb1.9O4.85 nanoparticles) has been demonstrated through structure and defect engineering for the first time. The copper niobate material presents a dual-block shear ReO3 crystal structure with large lattice parameters and shallow-level oxygen vacancies. The structural and morphological features of Cu0.1Nb1.9O4.85 nanoparticles offer high structural stability, an open crystalline skeleton, and enhanced Li+-transfer kinetics. Significantly, DFT calculations demonstrate lower bandgap and Li adsorption/formation energies, leading to enhanced ion/electron conductivities of Cu0.1Nb1.9O4.85. In-situ XRD techniques reveal the high structural stability and good mechanic property of Cu0.1Nb1.9O4.85 nanoparticles. Consequently, Cu0.1Nb1.9O4.85 nanoparticles present significant pseudocapacitive behavior (as high as 90.3 % at 1.1 mV s−1) and outstanding electrochemical performances. The reversible capacity can reach 398 mAh g−1 at 0.1C. Cu0.1Nb1.9O4.85 nanoparticles also exhibit excellent cycle lifespan (capacity retention of 95.2 % over 250 cycles, 1C) and impressive rate performance (188 mAh g−1 at 20C and maintains 97.3 % upon 2500 cycles). Even at a high rate of 100C, it can still deliver a charge capacity of 45 mAh g−1. Moreover, the Cu0.1Nb1.9O4.85 nanoparticles‖LiNi1/3Co1/3Mn1/3O2 full cell delivers a capacity of 150.6 mAh g−1. These results reflect the huge application prospect of Cu0.1Nb1.9O4.85 nanoparticles for boosting Li+ storage.
Related items
Showing items related by title, author, creator and subject.
-
Feng, Y.; Li, X.; Shao, Zongping; Wang, H. (2015)In this study, the electrochemical performance of hollow Zn2GeO4 nanoparticles as an anode material for lithium-ion batteries (LIBs) has for the first time been investigated and compared to other morphology-type Zn2GeO4 ...
-
Rajaeian, Babak (2012)Thin film composite (TFC) membranes have long been used by many large-scale applications (i.e., water and wastewater treatment). Recently, conventional polymeric TFC membranes are facing with short longevity due to high ...
-
Shiyab, Adnan M S H (2007)This study aimed at investigating the current practices and methods adopted by roads agencies around the world with regard to collection, analysis and utilization of the data elements pertaining to the main pavement ...