Show simple item record

dc.contributor.authorSu, M.
dc.contributor.authorLi, M.
dc.contributor.authorHe, K.
dc.contributor.authorWan, T.
dc.contributor.authorChen, X.
dc.contributor.authorZhou, Y.
dc.contributor.authorZhang, P.
dc.contributor.authorDou, A.
dc.contributor.authorXu, H.
dc.contributor.authorLu, Chunsheng
dc.contributor.authorWang, R.
dc.contributor.authorChu, D.
dc.contributor.authorLiu, Y.
dc.date.accessioned2023-02-08T12:04:52Z
dc.date.available2023-02-08T12:04:52Z
dc.date.issued2023
dc.identifier.citationSu, M. and Li, M. and He, K. and Wan, T. and Chen, X. and Zhou, Y. and Zhang, P. et al. 2023. Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries. Chemical Engineering Journal. 455: ARTN 140802.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90387
dc.identifier.doi10.1016/j.cej.2022.140802
dc.description.abstract

In search for new anode materials with high-capacity, ultra-fast charging, and safety characteristics for lithium-ion batteries (LIBs), copper niobate (Cu0.1Nb1.9O4.85 nanorods and Cu0.1Nb1.9O4.85 nanoparticles) has been demonstrated through structure and defect engineering for the first time. The copper niobate material presents a dual-block shear ReO3 crystal structure with large lattice parameters and shallow-level oxygen vacancies. The structural and morphological features of Cu0.1Nb1.9O4.85 nanoparticles offer high structural stability, an open crystalline skeleton, and enhanced Li+-transfer kinetics. Significantly, DFT calculations demonstrate lower bandgap and Li adsorption/formation energies, leading to enhanced ion/electron conductivities of Cu0.1Nb1.9O4.85. In-situ XRD techniques reveal the high structural stability and good mechanic property of Cu0.1Nb1.9O4.85 nanoparticles. Consequently, Cu0.1Nb1.9O4.85 nanoparticles present significant pseudocapacitive behavior (as high as 90.3 % at 1.1 mV s−1) and outstanding electrochemical performances. The reversible capacity can reach 398 mAh g−1 at 0.1C. Cu0.1Nb1.9O4.85 nanoparticles also exhibit excellent cycle lifespan (capacity retention of 95.2 % over 250 cycles, 1C) and impressive rate performance (188 mAh g−1 at 20C and maintains 97.3 % upon 2500 cycles). Even at a high rate of 100C, it can still deliver a charge capacity of 45 mAh g−1. Moreover, the Cu0.1Nb1.9O4.85 nanoparticles‖LiNi1/3Co1/3Mn1/3O2 full cell delivers a capacity of 150.6 mAh g−1. These results reflect the huge application prospect of Cu0.1Nb1.9O4.85 nanoparticles for boosting Li+ storage.

dc.languageEnglish
dc.publisherELSEVIER SCIENCE SA
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectEngineering, Environmental
dc.subjectEngineering, Chemical
dc.subjectEngineering
dc.subjectLithium -ion batteries
dc.subjectDual -block
dc.subjectOxygen vacancies
dc.subjectElectrochemical performance
dc.subjectCu0
dc.subject1Nb1
dc.subject85
dc.subjectLITHIUM INTERCALATION
dc.subjectNANOWIRES
dc.subjectCOMPOSITES
dc.subjectCAPABILITY
dc.subjectNANOFIBERS
dc.subjectNANOTUBES
dc.subjectCAPACITY
dc.subjectOXIDES
dc.titleStructure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries
dc.typeJournal Article
dcterms.source.volume455
dcterms.source.issn1385-8947
dcterms.source.titleChemical Engineering Journal
dc.date.updated2023-02-08T12:04:47Z
curtin.departmentSchool of Civil and Mechanical Engineering
curtin.accessStatusFulltext not available
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidLu, Chunsheng [0000-0002-7368-8104]
curtin.identifier.article-numberARTN 140802
dcterms.source.eissn1873-3212
curtin.contributor.scopusauthoridLu, Chunsheng [57061177000]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record