Show simple item record

dc.contributor.authorPeiris, Chandramalika R
dc.contributor.authorVogel, Yan B
dc.contributor.authorLe Brun, Anton P
dc.contributor.authorAragonès, Albert C
dc.contributor.authorCoote, Michelle L
dc.contributor.authorDíez-Pérez, Ismael
dc.contributor.authorCiampi, Simone
dc.contributor.authorDarwish, Nadim
dc.date.accessioned2023-02-15T02:02:31Z
dc.date.available2023-02-15T02:02:31Z
dc.date.issued2019
dc.identifier.citationPeiris, C.R. and Vogel, Y.B. and Le Brun, A.P. and Aragonès, A.C. and Coote, M.L. and Díez-Pérez, I. and Ciampi, S. et al. 2019. Metal-Single-Molecule-Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes. Journal of the American Chemical Society. 141 (37): pp. 14788-14797.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90486
dc.identifier.doi10.1021/jacs.9b07125
dc.description.abstract

Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on ⟨111⟩ than on ⟨100⟩, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal-single-molecule-semiconductor junctions between silicon and gold source and drain, electrodes. Au-C and Si-C molecule-electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s, which is 30-400% higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current-voltage properties during the lifetime of the molecular junction. We show that current rectification, which is intrinsic to metal-semiconductor junctions, can be controlled when a single-molecule bridges the gap in the junction. The system changes from being a current rectifier in the absence of a molecular bridge to an ohmic contact when a single molecule is covalently bonded to both silicon and gold electrodes. This study paves the way for the merging of the fields of single-molecule and silicon electronics.

dc.languageeng
dc.publisherAMER CHEMICAL SOC
dc.relation.urihttps://openresearch-repository.anu.edu.au/handle/1885/205914
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DE160100732
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP190100735
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DE160101101
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectChemistry, Multidisciplinary
dc.subjectChemistry
dc.subjectDIAZONIUM SALTS
dc.subjectGLASSY-CARBON
dc.subjectELECTROCHEMICAL REDUCTION
dc.subjectSURFACES
dc.subjectMONOLAYERS
dc.subjectTRANSPORT
dc.subjectPLATINUM
dc.subjectCONTACTS
dc.subjectBEHAVIOR
dc.titleMetal-Single-Molecule-Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes.
dc.typeJournal Article
dcterms.source.volume141
dcterms.source.number37
dcterms.source.startPage14788
dcterms.source.endPage14797
dcterms.source.issn0002-7863
dcterms.source.titleJournal of the American Chemical Society
dc.date.updated2023-02-15T02:02:30Z
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidDarwish, Nadim [0000-0002-6565-1723]
curtin.contributor.orcidCiampi, Simone [0000-0002-8272-8454]
curtin.contributor.researcheridCiampi, Simone [D-9129-2014]
dcterms.source.eissn1520-5126
curtin.contributor.scopusauthoridDarwish, Nadim [14031207900]
curtin.contributor.scopusauthoridCiampi, Simone [21733701500]


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record