Synergetic effect of multicomponent additives on limestone when assessed as a thermochemical energy storage material
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
The effect of adding both Al2O3 and ZrO2 to limestone (CaCO3) to enhance the cyclic stability and reaction kinetics of endothermic CO2 desorption and exothermic CO2 absorption is investigated. The formation of CaZrO3 and Ca-Al-O compounds, e.g. CA5Al6O14, is evident, which enables a substantial >80% capacity retention over 50 calcination/carbonation cycles. The additives enable fast reaction kinetics where an 80% energy storage capacity is reached within 20–30 min, which is attributed to the synergetic effect of having both Ca-Zr-O and Ca-Al-O ternary additives present. The inert nature of the formed compounds prevents sintering of the particles, whilst allowing ion migration throughout the crystal structures, catalysing the carbonation reaction.
Related items
Showing items related by title, author, creator and subject.
-
Zhang, Song; Ferrie, Stuart; Lyu, Xin; Xia, Y.; Darwish, Nadim ; Wang, Z.; Ciampi, Simone (2021)Optimizing the kinetics of an electrode reaction is central to the design of devices whose function spans from sensing to energy conversion. Electrode kinetics depends strongly on electrode surface properties, but the ...
-
Stewart, Helen ; Humphries, Terry ; Sheppard, Drew ; Tortoza, Mariana; Sofianos, M. Veronica ; Liu, Shaomin ; Buckley, Craig (2019)© 2019 The Royal Society of Chemistry. Hydrogen and ammonia have attracted attention as potential energy vectors due to their abundance and minimal environmental impact when used as a fuel source. To be a commercially ...
-
Xu, Xiaomin ; Pan, Y.; Zhong, Yijun ; Shi, C.; Guan, D.; Ge, L.; Hu, Z.; Chin, Y.Y.; Lin, H.J.; Chen, C.T.; Wang, H.; Jiang, San Ping; Shao, Zongping (2022)Oxygen evolution reaction (OER) is a key half-reaction in many electrochemical transformations, and efficient electrocatalysts are critical to improve its kinetics which is typically sluggish due to its multielectron-transfer ...