Show simple item record

dc.contributor.authorHamad, Mustafa S.
dc.contributor.authorBoissier, C.
dc.contributor.authorCalo, Victor
dc.contributor.authorGale, Julian
dc.contributor.authorNilsson Lill, S.O.
dc.contributor.authorParkinson, Gordon M.
dc.contributor.authorRohl, Andrew
dc.date.accessioned2023-03-08T06:00:59Z
dc.date.available2023-03-08T06:00:59Z
dc.date.issued2023
dc.identifier.citationHamad, M.S. and Boissier, C. and Calo, V.M. and Gale, J.D. and Nilsson Lill, S.O. and Parkinson, G.M. and Rohl, A.L. 2023. Quasi-static deformation simulations of molecular crystals. CrystEngComm. 25 (7): pp. 4307-4316.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/90751
dc.identifier.doi10.1039/d2ce01426b
dc.description.abstract

Identification of the mechanical performance of pharmaceuticals in the drug discovery process can determine the tabletability of a target molecule. Determination of the active slip systems and their ranking in molecular crystals is challenging because molecules offer a set of configurational variables absent from metallic or simple ionic materials, such as bond rotations, molecular rotations, and the relative orientation of molecules. This paper uses two computational methods, the rigid-block and tensor-based shearing methods, to calculate the slip barriers and gain insights regarding the slip deformation of simple molecular crystalline materials, using diatomic solid oxygen and anthracene as examples. Both methods use constrained quasi-static energy minimisation to simulate the materials' displacement and homogeneous shearing. These shearing methods rank the slip systems in oxygen and anthracene in agreement with experiment, including those reported herein where two previously unknown active slip systems in the basal plane of anthracene were identified independently from the computations. Internal degrees of freedom, in the form of shear-induced molecular rotations, critically influence the slip barriers and deformation mechanism. Our results uncover rotational twinning, which is linked to crystallographic symmetry rather than partial dislocations, while homogeneous shear of anthracene leads to a series of polymorphic transitions. The results also provide alternative interpretations of slip-observed morphologies.

dc.languageEnglish
dc.publisherROYAL SOC CHEMISTRY
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FL180100087
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectChemistry, Multidisciplinary
dc.subjectCrystallography
dc.subjectChemistry
dc.subjectMETASTABLE ANTHRACENE
dc.subjectPLASTIC-DEFORMATION
dc.subjectATTACHMENT ENERGY
dc.subjectSLIP SYSTEMS
dc.subjectBASAL SLIP
dc.subjectVISUALIZATION
dc.subjectPHASE
dc.subjectSHEAR
dc.subjectIDENTIFICATION
dc.subjectTRANSITION
dc.titleQuasi-static deformation simulations of molecular crystals
dc.typeJournal Article
dcterms.source.volume25
dcterms.source.number7
dcterms.source.startPage4307
dcterms.source.endPage4316
dcterms.source.issn1466-8033
dcterms.source.titleCrystEngComm
dc.date.updated2023-03-08T06:00:58Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidCalo, Victor [0000-0002-1805-4045]
curtin.contributor.orcidGale, Julian [0000-0001-9587-9457]
curtin.contributor.orcidRohl, Andrew [0000-0003-0038-2785]
curtin.contributor.researcheridCalo, Victor [B-4685-2010]
dcterms.source.eissn1466-8033
curtin.contributor.scopusauthoridCalo, Victor [14029599600]
curtin.contributor.scopusauthoridGale, Julian [7101993408]
curtin.contributor.scopusauthoridRohl, Andrew [7004407294]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record