Tuning the Electrochemical Property of the Ultrafine Metal-oxide Nanoclusters by Iron Phthalocyanine as Efficient Catalysts for Energy Storage and Conversion
Access Status
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Nanoclusters (NCs) have been demonstrated of outstanding performance in electrochemical energy storage and conversion technologies due to their strong quantum confinement effects and strong interaction with supports. Here, we developed a class of ultrafine metal-oxide (MOx, M = Fe, Co and Ni) NCs incorporated with iron phthalocyanine (FePc), MOx/FePc-G, supported on graphene as high-performance catalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and carbon dioxide reduction (CO2RR). The high activities for ORR and OER are attributed to the electron donation and accepting ability of the highly redox active of FePc-G that could tune the properties of MOx. The FeOx/FePc-G exhibits an extremely positive half-wave potential (E1/2) of 0.888 and 0.610 V for ORR in alkaline and neutral conditions, respectively, which is around 60 mV more positive than that of Pt/C. And NiOx/FePc-G shows similar OER activity with the state-of-the-art catalysts, Ir/C, and better performance than NiFeO NCs supported on graphene. Remarkably, the CoOx/FePc-G and NiOx/FePc-G show high activity and selectivity to reduce CO2 into CO with a low onset potential of −0.22 V (overpotential is 0.11 V).
Related items
Showing items related by title, author, creator and subject.
-
Fansuri, Hamzah (2005)Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
-
Wang, X.; Li, Xinyong ; Mu, J.; Fan, S.; Chen, X.; Wang, L.; Yin, Z.; Tade, Moses ; Liu, Shaomin (2019)Copyright © 2019 American Chemical Society. Oxygen vacancy-rich porous Co3O4 nanosheets (OV-Co3O4) with diverse surface oxygen vacancy contents were synthesized via facile surface reduction and applied to NO reduction ...
-
Cao, X.; Jiang, San Ping (2013)Oxygen reduction reaction of (La,Sr)MnO3 (LSM) cathode on La9.5Si6O26.25 apatite (LSO) electrolyte is studied over the temperature range 750–900 °C and the oxygen partial pressure range 0.01–1 atm by electrochemical ...