Electrode/electrolyte interface and interface reactions of solid oxide cells: Recent development and advances
Access Status
Authors
Date
2021Type
Metadata
Show full item recordCitation
Source Title
ISSN
Funding and Sponsorship
Collection
Abstract
High temperature solid oxide cells (SOCs) consisted of solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) are considered one of the most environmentally friendly and efficient energy conversion technology to store renewal energy from sun and wind in hydrogen and generate electricity from the fuels such as hydrogen and natural gas with high efficiency and very low greenhouse gas emission. Over the last few decades, the development of SOC technologies in particularly SOFCs has experienced significant progress and much of the recent research have paid great efforts in understanding the processes occurring at the electrode/electrolyte interfaces. As electrochemical reactions mainly proceed at the gas, electrode and electrolyte three phase boundaries (TPBs), the microstructure and properties of the electrode/electrolyte interfaces thus play a crucial role in determining the overall cell performance and durability. Herein, we review the progress and achievements in the fundamental researches of the electrode/electrolyte (mainly oxygen-conducting) interface evolution behavior under open circuit and polarization conditions. Studies involving interfacial phenomena such as interface formation and reactions, element segregation and diffusion, micropore formation and delamination are summarized and discussed in detail. Besides, the state of the art characterization techniques that have been employed to examine the interface behavior are reviewed. Finally, the challenges and prospects of the interface research in the improvement of the performance and durability of a SOC device are discussed.
Related items
Showing items related by title, author, creator and subject.
-
Ai, N.; He, S.; Li, N.; Zhang, Qi; Rickard, William; Chen, K.; Zhang, T.; Jiang, San Ping (2018)Active and stable oxygen electrode is probably the most important in the development of solid oxide electrolysis cells (SOECs) technologies. Herein, we report the successful development of mixed ionic and electronic ...
-
He, Z.; Zhang, L.; He, S.; Ai, N.; Chen, K.; Shao, Y.; Jiang, San Ping (2018)Reversing the direction of polarization current is essential for reversible solid oxide cells technologies, but its effect on cobaltite based perovskite oxygen electrodes is largely unknown. Herein, we report the operating ...
-
Chen, M.; Cheng, Y.; He, S.; Ai, N.; Veder, Jean-Pierre; Rickard, William; Saunders, M.; Chen, K.; Zhang, T.; Jiang, San Ping (2018)Bismuth oxide is as an active promoter in enhancing the ionic conductivity and electrocatalytic activity of manganite oxygen electrodes of solid oxide cells, but there are very limited reports on the formation and evolution ...