Inexpensive thermochemical energy storage utilising additive enhanced limestone
Citation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Energy storage is one of the key challenges in our society to enable a transition to renewable energy sources. The endothermic decomposition of limestone into lime and CO2is one of the most cost-effective energy storage systems but it significantly degrades on repeated energy cycling (to below 10% capacity). This study presents the first CaCO3system operating under physical conditions that mimic a real-life ‘thermal battery’ over an extended cycling life. These important results demonstrate that a thermal energy storage device based on CaCO3will be suitable for a range of applications,e.g.concentrated solar power plants, wind farms, photovoltaics, and excess grid energy. The operating temperature of 900 °C ensures a higher Carnot efficiency than state-of-the-art technologies at a fraction of the material cost. The capacity degradation of pure CaCO3as a function of calcination/carbonation cycling is overcome by the addition of either ZrO2(40 wt%) or Al2O3(20 wt%), which results in 500 energy storage cycles at over 80% capacity. The additives result in the formation of ternary compounds,e.g.CaZrO3and Ca5Al6O14, which restrict sintering and allow for the transmission of Ca2+and O2-ions to reaction sites.
Related items
Showing items related by title, author, creator and subject.
-
Balakrishnan, Sruthy ; Sofianos, M. Veronica; Paskevicius, Mark ; Rowles, Matthew ; Buckley, Craig (2020)Calcium hydride (CaH2) is considered an ideal candidate for thermochemical energy storage (thermal battery) due to its high energy density and low cost. Its very high operating temperature and poor cycling stability are ...
-
Poupin, L.; Humphries, Terry ; Paskevicius, Mark ; Buckley, Craig (2019)© The Royal Society of Chemistry. Metal hydrides present favourable thermal storage properties particularly due to their high energy density during thermochemical hydrogenation. For this purpose, sodium magnesium hydride ...
-
Poupin, Lucas ; Humphries, Terry ; Paskevicius, Mark ; Buckley, Craig (2019)© 2019 The Royal Society of Chemistry. Metal hydrides have demonstrated ideal physical properties to be the next generation of thermal batteries for solar thermal power plants. Previous studies have demonstrated that ...