Show simple item record

dc.contributor.authorMøller, K.T.
dc.contributor.authorIbrahim, A.
dc.contributor.authorBuckley, Craig
dc.contributor.authorPaskevicius, Mark
dc.date.accessioned2023-04-26T02:42:46Z
dc.date.available2023-04-26T02:42:46Z
dc.date.issued2020
dc.identifier.citationMøller, K.T. and Ibrahim, A. and Buckley, C.E. and Paskevicius, M. 2020. Inexpensive thermochemical energy storage utilising additive enhanced limestone. Journal of Materials Chemistry A. 8 (19): pp. 9646-9653.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/91767
dc.identifier.doi10.1039/d0ta03080e
dc.description.abstract

Energy storage is one of the key challenges in our society to enable a transition to renewable energy sources. The endothermic decomposition of limestone into lime and CO2is one of the most cost-effective energy storage systems but it significantly degrades on repeated energy cycling (to below 10% capacity). This study presents the first CaCO3system operating under physical conditions that mimic a real-life ‘thermal battery’ over an extended cycling life. These important results demonstrate that a thermal energy storage device based on CaCO3will be suitable for a range of applications,e.g.concentrated solar power plants, wind farms, photovoltaics, and excess grid energy. The operating temperature of 900 °C ensures a higher Carnot efficiency than state-of-the-art technologies at a fraction of the material cost. The capacity degradation of pure CaCO3as a function of calcination/carbonation cycling is overcome by the addition of either ZrO2(40 wt%) or Al2O3(20 wt%), which results in 500 energy storage cycles at over 80% capacity. The additives result in the formation of ternary compounds,e.g.CaZrO3and Ca5Al6O14, which restrict sintering and allow for the transmission of Ca2+and O2-ions to reaction sites.

dc.languageEnglish
dc.publisherROYAL SOC CHEMISTRY
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FT160100303
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LP150100730
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectEnergy & Fuels
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectMaterials Science
dc.subjectCAO-BASED SORBENTS
dc.subjectCO2 CAPTURE
dc.subjectBIFUNCTIONAL CATALYST
dc.subjectCONDUCTIVITY
dc.subjectALUMINATE
dc.subjectCAPACITY
dc.subjectBATTERY
dc.subjectCARBON
dc.subjectCAZRO3
dc.titleInexpensive thermochemical energy storage utilising additive enhanced limestone
dc.typeJournal Article
dcterms.source.volume8
dcterms.source.number19
dcterms.source.startPage9646
dcterms.source.endPage9653
dcterms.source.issn2050-7488
dcterms.source.titleJournal of Materials Chemistry A
dc.date.updated2023-04-26T02:42:46Z
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidBuckley, Craig [0000-0002-3075-1863]
curtin.contributor.orcidPaskevicius, Mark [0000-0003-2677-3434]
curtin.contributor.orcidMoeller, Kasper [0000-0002-1970-6703]
curtin.contributor.researcheridBuckley, Craig [B-6753-2013]
curtin.contributor.researcheridPaskevicius, Mark [K-1638-2013]
dcterms.source.eissn2050-7496
curtin.contributor.scopusauthoridBuckley, Craig [56412440100] [7202815196]
curtin.contributor.scopusauthoridPaskevicius, Mark [23025599100]
curtin.contributor.scopusauthoridMoeller, Kasper [56201357800]
curtin.repositoryagreementV3


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record