Ceramic lithium ion conductor to solve the anode coking problem of practical solid oxide fuel cells
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
For practical solid oxide fuel cells (SOFCs) operated on hydrocarbon fuels, the facile coke formation over Ni-based anodes has become a key factor that limits their widespread application. Modification of the anodes with basic elements may effectively improve their coking resistance in the short term; however, the easy loss of basic elements by thermal evaporation at high temperatures is a new emerging problem. Herein, we propose a new design to develop coking-resistant and stable SOFCs using Li+-conducting Li0.33La0.56TiO3 (LLTO) as an anode component. In the Ni/LLTO composite, any loss of surface lithium can be efficiently compensated by lithium diffused from the LLTO bulk under operation. Therefore, the SOFC with the Ni/LLTO anode catalyst layer yields excellent power outputs and operational stability. Our results suggest that the simple adoption of a Li+ conductor as a modifier for Ni-based anodes is a practical and easy way to solve the coking problem of SOFCs that operate on hydrocarbons.
Related items
Showing items related by title, author, creator and subject.
-
Wang, F.; Wang, Wei; Ran, R.; Tade, Moses; Shao, Zongping (2014)Al2O3 and SnO2 additives are introduced into the Ni–YSZ cermet anode of solid oxide fuel cells (SOFCs) for operation on simulated biogas. The effects of incorporating Al2O3/SnO2 on the electrical conductivity, morphology, ...
-
Wang, Wei; Ran, R.; Su, C.; Guo, Y.; Farrusseng, D.; Shao, Zongping (2013)In this study, we report a novel approach for suppressing coke formation in direct-methane solid oxide fuel cells (SOFCs) with a conventional nickel cermet anode by simply adding ammonia to the fuel gas. Because ammonia ...
-
Wan, T.; Zhu, A.; Guo, Y.; Wang, C.; Huang, S.; Chen, H.; Yang, G.; Wang, Wei; Shao, Zongping (2017)© 2017 Elsevier B.V. In this study, a proton conducting solid oxide fuel cell (layered H + -SOFC) is prepared by introducing a La 2 NiO 4 perovskite oxide with a Ruddlesden-Popper structure as a catalyst layer onto a ...