Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Artificial Noise-Aided Secure Relay Communication with Unknown Channel Knowledge of Eavesdropper

    88754.pdf (1.660Mb)
    Access Status
    Open access
    Authors
    Li, Bin
    Zhang, M.
    Rong, Yue
    Han, Z.
    Date
    2021
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, B. and Zhang, M. and Rong, Y. and Han, Z. 2021. Artificial Noise-Aided Secure Relay Communication with Unknown Channel Knowledge of Eavesdropper. IEEE Transactions on Wireless Communications. 20 (5): pp. 3168-3179.
    Source Title
    IEEE Transactions on Wireless Communications
    DOI
    10.1109/TWC.2020.3047926
    ISSN
    1536-1276
    Faculty
    Faculty of Science and Engineering
    School
    School of Elec Eng, Comp and Math Sci (EECMS)
    Remarks

    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

    URI
    http://hdl.handle.net/20.500.11937/88930
    Collection
    • Curtin Research Publications
    Abstract

    In this article, a new relay-aided secure communication system is investigated, where a transmitter sends signals to a destination via an amplify-and-forward (AF) relay in the presence of an eavesdropper. We consider a general system configuration, where the source, relay, destination, and eavesdropper are all equipped with multiple antennas. In the practical scenarios of unknown eavesdropper's channel state information (CSI) and uncertainty of the eavesdropper's location, we aim to maximize the expected value of the system secrecy rate over the presumed distribution of the eavesdropper's channels, by exploiting the artificial noise (AN) transmitted by the source and relay nodes. The system design issue is formulated as a nonconvex stochastic optimization problem with a source transmission power constraint and a nonconvex relay transmission power constraint. A novel computational method is proposed to solve this challenging problem. The new method is developed based on an exact penalty function method together with a parallel stochastic decomposition algorithm. Numerical simulations are performed to study the effectiveness of the proposed scheme at various locations of the eavesdropper. Simulation results show that for most cases, secure communication can be achieved without the CSI knowledge of eavesdropper's channels, and the achievable secrecy rate follows the trend of a benchmark system where the eavesdropper's full CSI is available. In particular, the achievable system secrecy rate increases with the number of antennas at the legitimate users. Moreover, the optimal power allocated for the transmission of the AN increases with the system signal-to-noise ratio. The proposed computational method achieves a higher system secrecy rate than a conventional penalty function based approach.

    Related items

    Showing items related by title, author, creator and subject.

    • Signal processing algorithms for multiuser MIMO relay communication systems
      Khandaker, Muhammad Ruhul Amin (2012)
      The increasing demand for mobile applications such as streaming media, software updates, and location-based services involving group communications has prompted the need for wireless communication technologies that can ...
    • Multiuser Multi-Hop AF MIMO Relay System Design Based on MMSE-DFE Receiver
      Lv, Y.; He, Z.; Rong, Yue (2019)
      To achieve a better long source-destination distance communication in uplink multiaccess scenarios, we propose a multiuser multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay technique with ...
    • On Uplink-Downlink Duality of Multi-Hop MIMO Relay Channel
      Rong, Yue; Khandaker, Muhammad (2011)
      For two-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay systems, the uplink-downlink duality has been recently investigated. In this paper, we establish the duality between uplink and downlink ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.