Show simple item record

dc.contributor.authorBaddeley, Adrian
dc.contributor.authorDavies, Tilman M
dc.contributor.authorRakshit, Suman
dc.contributor.authorNair, Gopalan
dc.contributor.authorMcSwiggan, Greg
dc.date.accessioned2023-04-19T12:23:32Z
dc.date.available2023-04-19T12:23:32Z
dc.date.issued2022
dc.identifier.citationBaddeley, A. and Davies, T.M. and Rakshit, S. and Nair, G. and McSwiggan, G. 2022. Diffusion Smoothing for Spatial Point Patterns. Statistical Science. 37 (1): pp. 123-142.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/91583
dc.identifier.doi10.1214/21-STS825
dc.description.abstract

Traditional kernel methods for estimating the spatially-varying density of points in a spatial point pattern may exhibit unrealistic artefacts,in addition to the familiar problems of bias and over or under-smoothing.Performance can be improved by using diffusion smoothing, in which thesmoothing kernel is the heat kernel on the spatial domain. This paper developsdiffusion smoothing into a practical statistical methodology for twodimensionalspatial point pattern data. We clarify the advantages and disadvantagesof diffusion smoothing over Gaussian kernel smoothing. Adaptivesmoothing, where the smoothing bandwidth is spatially-varying, can beperformed by adopting a spatially-varying diffusion rate: this avoids technicalproblems with adaptive Gaussian smoothing and has substantially betterperformance. We introduce a new form of adaptive smoothing using laggedarrival times, which has good performance and improved robustness. Applicationsin archaeology and epidemiology are demonstrated. The methods areimplemented in open-source R code

dc.languageEnglish
dc.publisherInstitute of Mathematical Statistics
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP130104470
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP130102322
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectStatistics & Probability
dc.subjectMathematics
dc.subjectAdaptive smoothing
dc.subjectbandwidth
dc.subjectheat kernel
dc.subjectkernel estimation
dc.subjectlagged arrival method
dc.subjectRichardson extrapolation
dc.subjectBANDWIDTH SELECTION
dc.subjectDENSITY-ESTIMATION
dc.subjectCROSS-VALIDATION
dc.subjectKERNEL
dc.subjectINTENSITY
dc.subjectESTIMATORS
dc.subjectMATRICES
dc.subjectLATTICE
dc.titleDiffusion Smoothing for Spatial Point Patterns
dc.typeJournal Article
dcterms.source.volume37
dcterms.source.number1
dcterms.source.startPage123
dcterms.source.endPage142
dcterms.source.issn0883-4237
dcterms.source.titleStatistical Science
dc.date.updated2023-04-19T12:23:31Z
curtin.departmentCurtin School of Population Health
curtin.departmentSchool of Elec Eng, Comp and Math Sci (EECMS)
curtin.accessStatusOpen access
curtin.facultyFaculty of Health Sciences
curtin.facultyFaculty of Science and Engineering
curtin.contributor.orcidRakshit, Suman [0000-0003-0052-128X]
curtin.contributor.orcidBaddeley, Adrian [0000-0001-9499-8382]
curtin.contributor.researcheridBaddeley, Adrian [E-3661-2010]
dcterms.source.eissn2168-8745
curtin.contributor.scopusauthoridRakshit, Suman [57193350564]
curtin.contributor.scopusauthoridBaddeley, Adrian [7101639465]
curtin.repositoryagreementV3


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record