Terminal Deuterium Atoms Protect Silicon from Oxidation
Access Status
Authors
Date
2023Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Funding and Sponsorship
Remarks
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Terminal Deuterium Atoms Protect Silicon from Oxidation, copyright © American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.3c11598.
Collection
Abstract
In recent years, the hybrid silicon-molecular electronics technology has been gaining significant attention for applications in sensors, photovoltaics, power generation, and molecular electronics devices. However, Si-H surfaces, which are the platforms on which these devices are formed, are prone to oxidation, compromising the mechanical and electronic stability of the devices. Here, we show that when hydrogen is replaced by deuterium, the Si-D surface becomes significantly more resistant to oxidation when either positive or negative voltages are applied to the Si surface. Si-D surfaces are more resistant to oxidation, and their current-voltage characteristics are more stable than those measured on Si-H surfaces. At positive voltages, the Si-D stability appears to be related to the flat band potential of Si-D being more positive compared to Si-H surfaces, making Si-D surfaces less attractive to oxidizing OH- ions. The limited oxidation of Si-D surfaces at negative potentials is interpreted by the frequencies of the Si-D bending modes being coupled to that of the bulk Si surface phonon modes, which would make the duration of the Si-D excited vibrational state significantly less than that of Si-H. The strong surface isotope effect has implications in the design of silicon-based sensing, molecular electronics, and power-generation devices and the interpretation of charge transfer across them.
Related items
Showing items related by title, author, creator and subject.
-
Gonçales, V.; Wu, Y.; Gupta, B.; Parker, S.; Yang, Y.; Ciampi, Simone; Tilley, R.; Gooding, J. (2016)Chemical passivation of nonoxide semiconductors is a key prerequisite for electrochemical devices that operate in water-based electrolytes. Silicon remains the technologically most important material and organic monolayers ...
-
Peiris, Chandramalika ; Ciampi, Simone ; Dief, Essam ; Zhang, Jinyang ; Canfield, P.J.; Le Brun, A.P.; Kosov, D.S.; Reimers, J.R.; Darwish, Nadim (2020)We report the synthesis of covalently linked self-assembled monolayers (SAMs) on silicon surfaces, using mild conditions, in a way that is compatible with silicon-electronics fabrication technologies. In molecular ...
-
Li, Tiexin; Peiris, Chandramalika ; Dief, Essam; MacGregor, M.; Ciampi, Simone ; Darwish, Nadim (2022)Electric fields can induce bond breaking and bond forming, catalyze chemical reactions on surfaces, and change the structure of self-assembled monolayers on electrode surfaces. Here, we study the effect of electric fields ...